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We study the buckling of a 2D Elastica floating on a bath of dense fluid, subjected to axial
compression. The sinusoidal pattern predicted by the analysis of linear stability is shown to become
localized above the buckling threshold. A non-linear amplitude equation is derived for the envelope of
the pattern. These results provide a simple interpretation to the wrinkle-to-fold transition reported
by Pocivavsek et al. (Science, 2008). An analogy with the classical problem of the localized buckling
of a strut on an non-linear elastic foundation is presented.

I. INTRODUCTION

The buckling of an elastic rod resting on an elastic
foundation is a classical problem in structural engineer-
ing. While the critical load and wavelength are set by
the size of the system in the case of Euler’s free-standing
Elastica, an intrinsic length scale appears in the presence
of a foundation. This scale determines a critical load and
wavelength that are independent of the size of the sys-
tem, provided it is large enough.

This classical problem and its variants have received
an upsurge of interest recently, see Ref. [1] for a review.
A stiff film, skin or filament buckling on a soft founda-
tion define simple systems displaying rich wrinkling be-
haviors governed by well-controlled, geometrical nonlin-
earities. In gels, swelling induces biaxial residual stress
along a skin near the surface, whose buckling and post-
buckling behavior has been investigated [2, 3]. The non-
linear phenomenon of period doubling has been observed
the wrinkling of films bound to an elastomer [4]. Nonlin-
ear selection of 2D buckling patterns in a thin, stiff elastic
plate on top of a soft foundation has been described re-
cently [5–7]. The related geometry of a thin, stiff shell
around a soft spheroidal core has been investigated nu-
merically in connection with the morphogenesis of fruits
and vegetables [8].

An extreme case of a soft foundation is that of a film
floating on a fluid. A striking, self-similar wrinkling pat-
tern has been observed in this case [9]. In the present
paper, we analyze recent observations of the buckling
of a thin polymer sheet resting on the surface of water
by Pocivavsek [10]. The film is compressed laterally by
clamping its lateral edges. Immediately above threshold,
sinusoidal wrinkles are formed. They spread over the en-
tire length of the film and are well described by a linear
stability analysis. When the sheet is further compressed,
the authors report a transition to sharp, localized folds.
These observations were based on experiments, and re-
produced in numerical simulations. Here, we show that
this wrinkle-to-fold transition is a particular example of
the phenomenon of localized buckling.

In a recent paper, Diamant and Witten [11] showed
that the experimental and numerical results of Poci-
vavsek, including the wrinkle-to-fold transition, are well
explained by postulating a locally sinusoidal buckling,

with a slowly varying envelope given by a hyperbolic se-
cant function. They found that this particular buckling
profile has indeed a lower energy than the uniform sinu-
soidal pattern sufficiently close to threshold. They tried
other profiles for the envelope but did not find any that
would make the energy lower or would agree better with
the experiments. Here, we show that the slow modula-
tion of the buckling amplitude and the wrinkle-to-fold
transitions are related to a phenomenon known as local-
ized buckling, that the optimal envelope can be derived
systematically using an amplitude equation, and that the
hyperbolic secant profile that they proposed is indeed op-
timal.

Amplitude equation were initially introduced in the
context of convection phenomena in fluid mechanics, to
explain the organization of rolls in post-critical Rayleigh-
Bénard convection [12, 13]; see Ref. [14] for a review. In
the field of mechanical engineering, amplitude equations
were used as part of a general effort to characterize the
post-buckled behavior of structures [15]. A related two-
scale expansion was introduced by Amazigo [16], who
pointed out localization of buckling patterns induced by
imperfections for a beam resting on a non-linear elastic
foundation. A general discussion on this problem can be
found in Ref. [17]. An interesting interpretation is de-
veloped by Tvergaard [18]: using an elegant and generic
model, they interpret localized buckling as the progres-
sive invasion of a phase representing uniform buckles, by
a phase representing localized buckles. A number of ex-
tensions have been considered, such as the case of a spa-
tially inhomogeneous foundation [19, 20], and dynamic
and 3D effects [21, 22]. The buckling of a twisted elas-
tic rod into a helical pattern is a well-known illustration
of the phenomenon of localization. The exact non-linear
solution of Coyne [23] resembles an amplitude equation
but is exact to all orders. Its stability been investigated
analytically and theoretically [24].

II. PROBLEM FORMULATION

We consider an inextensible elastic filament of length L
floating on a bath of dense fluid in a 2D geometry. The
main unknown is the profile h(s) of the filament, pa-
rameterized by the arc-length s; see Figure 1. Following
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FIG. 1. Buckling of an Elastica floating on a bath of fluid.
The profile is expressed by the function h(s) yielding the de-
flection as a function of arc-length.

Reference [11], we consider the energy in rescaled form

E =

∫ L/2

−L/2
eds, (1a)

with density per arclength

e =
1

2

h′′
2

1− h′2
− P

(
1−

(
1− h′2

) 1
2

)
+ U(h, h′). (1b)

The first term is a bending energy expressed in units such
that the bending modulus is unity. The second term is
the work of the external horizontal compression force P ;
the coefficient of P in equation (1b) yields upon inte-
gration the horizontal separation of the endpoints of the
filament. The last term U(h, h′) is the potential energy
of the foundation. In the floating case, this is the energy
of a column of of fluid which is pushed downwards or
sucked upwards by a height h(s) away from its natural
level:

U(h, h′) = Uf(h, h
′) =

h2

2

(
1− h′2

) 1
2

. (2)

In parallel with the floating case, we shall consider the
classical case of a non-linear elastic foundation, known as
a Winkler foundation:

U(h, h′) = Uw(h) =
1

2
h2 +

νw
24

h4, (3)

where the parameter νw measures the amount of non-
linearity. The case of an elastic foundation, when the
foundation energy does not depend on the derivative h′,
has been discussed at length in the literature. One of the
contribution of the present paper is to extend the theory
of localized buckling, classically based on equation (3), to
a more general foundation energy of the form U(h, h′).

With the aim to highlight the analogy between the two
cases, we will avoid to make any use of the particular
forms of the fluid or elastic potentials (2) and (3). We
shall simply make use of the following properties:

U(0, 0) = 0 (4a)

U,hh′(0, 0) = 0 (4b)

U,h2(0, 0) = 1 (4c)

U,h′2(0, 0) = 0. (4d)

a)

b)

FIG. 2. We are mainly interested in the case (a) of a floating
Elastica, represented by a potential Uf(h, h

′). Our derivation
of the amplitude equation extends the classical case (b) of
a beam resting on a non-linear elastic foundation (Winkler
foundation). In the latter case, the potential Uw(h) does not
depend on the local slope h′.

These equalities are satisfied by both types of founda-
tions (2) and (3), as can be checked easily. Note that
(i) equation (4a) can always be satisfied by redefining
the zero of energy, (ii) equation (4b) follows from the
symmetries h ← (−h) and h′ ← (−h′), and (iii) equa-
tion (4c) yields the linearized stiffness of the foundation
which can indeed be set to 1 by appropriate rescaling.

Let us define an anharmonicity parameter for the foun-
dation, denoted ν(U), whose importance will become
clear later:

ν(U) = U,h4(0, 0) + 2U,h2h′2(0, 0) + U,h′4(0, 0). (5)

Evaluation of the derivatives of the fluid potential Uf in
equation (2) yields the value

νf = ν(Uf) = −2 (6)

for the floating case. In the case of a non-linear elastic
foundation, equation (5) yields ν(Uw) = νw showing that
the notation νw in equations (3) is consistent with the
definition (5).

In the following sections, we study the equilibria of
the floating filament, i. e. determine profiles h(s) mak-
ing the energy of equation (1) stationary. We do not
consider stability issues which have been discussed in re-
lated problems, see e. g. Ref. [24], and in the problem at
hand [11]. As a result, we can replace the displacement
control in the original experiments by a force control in
the present analysis, through the load parameter P . This
avoids the complication to deal with a constrained mini-
mization problem. The experiment would yield different
results with a control in force, which is unstable, but that
is irrelevant as far as the equilibria are concerned.
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a)

b)

FIG. 3. Interpretation of the two-scale expansion (7a) based
on the existence of a small width ∆k ∼ ε of unstable
wavenumbers near threshold, after [12].

Nonlinearities in the response of the foundation, here
quantified by the parameter ν(U), are known to cause
localization of buckling, see e. g. Ref. [17]. Geometric
nonlinearities in the Elastica energy (1b) are also known
to produced localization [25]. Here, both effects are taken
into account.

III. TWO-SCALE EXPANSION

Near the threshold for linear stability P = Pc, there
is a width ∆k ∼

√
|P − Pc| of unstable wavenumbers,

as sketched in Figure 3. By a classical argument [12],
this unstable band yields by linear combination a slowly
modulated sinusoidal pattern with local wavenumber kc,
the critical wavenumber. This motivates the following
two-scale expansion [13, 14]

h(s) = ε

(
H1

(
s

1/ε

)
+ εH2

(
s

1/ε

)
+ · · ·

)
cos(kc s).

(7a)
Here, ε is defined as the square-root of distance to thresh-
old:

P = Pc − ε2. (7b)

Note that the dominant term in the expansion (7a) is lin-
ear in ε; by equation (7b), the amplitude is therefore pro-
portional to the square root of the distance to threshold,
as usual in continuous bifurcations. In other words, the
indeterminacy in the sign of ε = ±

√
Pc − P corresponds

to the up-down symmetry h← (−h) of the system.

In equation (7b), a minus sign is required in front of
the term ε2: replacing it by a plus sign would make the
forthcoming construction fail. This points to the fact
that buckled solutions exist only for loads less than the
critical load, P ≤ Pc, i. e. the load decreases above
threshold. Such a bifurcation is called sub-critical. Be-
cause of this decrease of the load, a force-controlled ex-
periment would be unstable but there is no discontinuity
if the displacement is controlled instead.

Our aim is to derive the shape H1 of the envelope at
leading order near threshold, i. e. when the parameter ε
is small:

ε� 1. (8)

For simplicity, we assume that the size of the system is
infinite:

L� 1

ε
. (9)

For a discussion of the effects associated with a finite
size, including the selection of the unstable wavelength,
see Ref. [26–28].

IV. LINEAR STABILITY

We start with the classical analysis of linear stability,
which yields the critical wavelength and load but not
the amplitude. It will be complemented by a non-linear
analysis in the following sections.

Inserting the two-scale expansion (7) into the density
of energy (1b), and expanding to second order in ε, we
find

e = εH1(s ε) (U,h(0, 0) cos kcs− U,h′(0, 0) kc sin kcs) · · ·

+
ε2

2
H2

1 (s ε)
(
(1 + k4c ) cos2 kcs− Pc k

2
c sin2 kcs

)
+O(ε3),

after using the numeric values of the derivatives of
U(h, h′) that are known from equations (4a)–(4d). An-
ticipating on the result kc = O(1), we note that in the
limit of a long Elastica, Lkc � 1 and near threshold,
ε � 1, oscillatory terms can be averaged. This removes
first-order contribution, and we find

E

L
=
ε2

4
(1 + k4c −Pc k

2
c )

(
1

L

∫ L/2

−L/2
H1

2(s ε) ds

)
+O(ε3)

(10)
The linear stability threshold is reached when the coef-
ficient in front of the quadratic term cancels, (1 + k4 −
Pc k

2) = 0. This yields a buckling load P ∗c (k) that de-
pends on the wavenumber of the perturbation:

P ∗c (k) =
1 + k4

k2
.

The critical wavenumber kc is the found by requiring that
this critical load is an extremum, dP ∗c /dk = 0, which
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yields kc = 1. Plugging back into equation above, we
find the classical result of the linear stability analysis:

kc = 1, Pc = 2. (11)

where Pc = P ∗c (kc).

V. AMPLITUDE EQUATION

In non-conservative systems such as Rayleigh-Bénard
convection rolls, amplitude equations are derived by ex-
panding the non-linear equations of motion [14]. Here
the existence of a variational structure provides a more
straightforward way to derive the amplitude equation, see
e. g. [25, 29]: we expand the energy functional in ε to the
lowest order where it depends explicitly on the amplitude
H1. An amplitude equation is then obtained by minimiz-
ing of the resulting functional using the Euler-Lagrange
equations.

We observe that the expansion (10) of energy to or-
der ε2 is actually zero when the critical values kc and Pc

are inserted. At next order, ε3, the energy is made up
of quickly oscillatory terms that all average to 0, as hap-
pened at linear order in ε. Therefore, we have to push the
expansion of E to order ε4. As we shall see, the energy
not only depends on the value of H1 at this order, but
also on its derivatives with respect to the slow variable.

A. Derivation

Expansion to order ε4 of the energy E of equation (1)
using the two-scale expansion (7a) is carried out in details
in the Appendix. After averaging with respect to the fast
variable, the result is:

E

L
= 2 ε4

(
1

L ε

∫ +L ε
2

−L ε2
L(S) dS

)
+O(ε5). (12a)

Here, L is the effective energy density for the envelope
H1

L(S) = −1

8

(
−H1

2(S) +
2− ν(U)

16
H1

4(S)

)
· · ·

+
1

2
H ′1

2
(S)− 1

4

d(H1(S)H ′1(S))

dS
, (12b)

which depends only on the slow variable S,

S = s ε.

In equation (12b) it is remarkable that the properties of
the substrate, be it elastic or fluid, are captured by the
single coefficient ν(U), defined in equation (5). Based on
this remark, we define in Section VI a non-linear elastic
foundation equivalent to a fluid foundation. The reader
already familiar with the theory of localized buckling on

a nonlinearly elastic foundation, recalled here for the pur-
pose of completeness, can skip directly to this Section VI.

The terms depending on H1 but not on its derivatives
in equation (12b) define an effective potential

Vν(H1) =
1

8

(
−H1

2 +
2− ν(U)

16
H1

4

)
. (13)

In an infinite system L ε� 1, and for buckling patterns
such that H ′1 → 0 towards the endpoints S → ±∞, we
can extend to infinity the domain of integration, and get
rid of the boundary term:

E

L
=

2 ε4

L ε

∫ +∞

−∞

[
−Vν(U)(H1(S)) +

1

2
H ′1

2
(S)
]

dS. (14)

Note that the condition H ′1 → 0 for S → ±∞ holds both
for the two types of patterns of interest: the extended
pattern is such that H ′1(S) = 0 everywhere, and the lo-
calized patterns such that H1(S) goes to zero at infinity.

According to the dynamic phase space analogy [30],
the integral of the right-hand side of equation (14) can
be identified as the action of a particle H1(S) with unit
mass in a potential Vν(U)(H1), when time is identified
with the slow variable S. Therefore finding the envelope
H1(S) that makes the energy stationary is equivalent to
the problem of finding the trajectory of a particle in an
effective potential. The equation for the optimal envelope
H1(S) obtained by the Euler-Lagrange equations is just
the equation of motion of the equivalent particle:

H ′′1 (S) = −V ′ν(U)(H1(S)) (15)

This non-linear amplitude equation is similar to that de-
rived by Newell and Whitehead [12], and Segel [31] in the
context of Rayleigh-Bénard convection.

B. Localized solutions

Localized buckling is described by solutions of equa-
tion (15) such that

H1(S)→ 0, H ′1(S)→ 0 for S → ±∞. (16)

For the equivalent dynamical system [30], this corre-
sponds to a homoclinic orbit to the trivial solutionH = 0.
Given the potential Vν , defined in equation (13) and plot-
ted in Figure 4a, this homoclinic orbit exists only if

2− ν(U) > 0. (17)

When this condition holds, the homoclinic orbit is that
sketched in grey in Figure 4a. The inequality (17) is a
condition for the existence of localized buckling solutions.
It is always satisfied in the case of a floating Elastica, for
which ν(Uf) = νf = −2. The constant 2 in the left-hand
side arises out of the geometrically nonlinear terms in
the Elastica. It is positive. As a consequence, geometric
nonlinearities are sufficient to produce localized buckling,
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FIG. 4. (a) Effective potential Vν defined in equation (13), for
2 − ν > 0. (b) Envelope H1 describing localized buckling in
a floating Elastica. This is the homoclinic trajectory shown
by grey path in (a) and given by equation (18). (c) Winkler
potential for the equivalent elastic (elastic) foundation. (νw =
−2).

even on a linear elastic foundation (ν = νw = 0), as has
been observed by Hunt [25].

Note that the conserved energy 1
2 H

′
1
2
+Vν(U)(H1) asso-

ciated with the equation of motion (15) takes on the value
zero for the homoclinic orbit, by equation (16). This al-
lows one to write the amplitude equation in integrated
form:

1

2
H ′1

2
(S) + Vν(U)(H1(S)) = 0.

Its solution is a hyperbolic secant:

H1(S) =
4

(2− ν(U))
1/2

1

cosh
(
S−S0

2

) . (18)

In terms of the original unknown h(s), the buckling pro-
file reads, using equation (7a):

h(s) =
4 ε

(2− ν(U))
1/2

cos s

cosh
(
S−S0

2

) . (19)

Diamant and Witten [11] study the buckling of a float-
ing Elastica, starting from an Ansatz which is precisely
of the form (19). We have just shown that this Ansatz is
optimal. This explains the excellent agreement that they

obtain when comparing to the numerical and experimen-
tal results of Pocivavsek [10].

For future reference, note that by equation (12a), the
energy of the localized pattern reads

E = ε3
(

2

∫ +∞

−∞
L(S) dS

)
=

32 ε3

3 (2− ν)
=

8 ε3

3
. (20)

VI. EQUIVALENT ELASTIC FOUNDATION

The potential of the foundation U(h, h′) comes into the
amplitude equation solely through the set of relations (4)
and the value of anharmonicity parameter ν(U). The
floating case is characterized by νf = 2 from equation (6),
and is therefore equivalent to a non-linear Winkler foun-
dation with parameter

νw = −2. (21)

This equivalent elastic foundation is softening (νw < 0),
a case which is known to lead to buckling patterns lo-
calized far from the boundaries. As noted earlier, this
softening, due to the foundation, adds up with that due
the geometrical nonlinearities, manifested in the positive
constant (+2) in the left-hand side of equation (17).

Here we show that the condition (21) defining the
equivalent Winkler foundation has a simple interpreta-
tion: it makes equal the average value of the dominant
anharmonic terms in either the fluid foundation or the
equivalent elastic one. To estimate the average strength
of the anharmonic term in the fluid case, let us expand
Uf ,

Uf =
h2

2

(
1− h′

2

2
+ · · ·

)
=
h2

2
− h2 h′

2

4
+ · · · (22)

Let then be r the ratio of strength of the anharmonic
term in a fluid system, compared to that in a Winkler
foundation (3)

r =

(
− 〈h

2 h′
2〉

4

)/(
νw
24
〈h4〉

)
.

Here the triangular brackets denote average with respect
to the fast variable s. Inserting a harmonic perturbation
h = εH1 cos s with critical wavelength kc = 1 into this
expression , we have

r =

(
− 1

4
ε4H4

1 〈cos2 s sin2 s〉

)/(
νw
24

ε4H4
1 〈cos4 s〉

)
The averages can be calculated by reducing the trigono-
metric functions: 〈cos2 s sin2 s〉 = 1

8 and 〈cos4 s〉 = 3
8 .

This yields

r = − 2

νw
.

Therefore, the equivalent Winkler foundation νw = −2
is precisely such that the anharmonic term has the same
average intensity as in the fluid foundation Uf , i. e. it
follows from the condition r = 1.
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VII. INTERPRETATION OF THE RESULTS OF
POCIVAVSEK ET AL.

Diamant and Witten postulate a buckling profile of
the form (19) and show that it reproduces accurately the
observations of Pocivavsek [10]. For the sake of complete-
ness, we derive the main results of Diamant and Witten
in our own formalism — we refer the reader to their pa-
per for details [11]. The end-to-end shortening ∆ of the
filament in the localized helix configuration is given by
the integral of the factor of P in equation (1b):

∆ =

∫
1− (1− h′2)

1
2 ds =

∫
〈h′2〉

2
ds

=
1

ε

∫
ε2H1

2〈cos2 s〉
2

dS =
ε

4

∫
H1

2 dS =
16 ε

2− ν
.

As a result, the load-displacement relation reads

P = 2−ε2 = 2−
(

2− ν
16

)2

∆2 = 2−
(

(2− ν)π

8

)2 (
∆

λ

)2

,

where we have introduced the wavelength λ = 2π of the
pattern. Restoring dimensional variables and setting ν =
νf = 2, we obtain the load-displacement relation for the
localized helix solution:

P

(BK)1/2
= 2− π2

4

(
∆

λ

)2

,

where B is the bending modulus of the filament and K =
ρ g the weight of the fluid per unit volume. Diamant and

Witten have noted that this relation accurately matches
the numerical findings of Pocivavsek [10].

Note that the energy (20) is consistent with the en-
ergy computed by DW in their equation (13)DW when
we suppress the potential term that is not included in
their definition:

EDW = E − (−P ∆) =
8 ε3

3
+ (2− ε2) ∆ = 2 ∆− ∆3

48
.

VIII. CONCLUSION

We have extended the theory of localized buckling of
a beam on a non-linear elastic foundation to the case of
a floating Elastica. To do so we considered a foundation
potential U(h, h′) that depends not only on the local de-
flection h but also on the local slope h′. We considered a
general potential U(h, h′) satisfying the conditions (4) ex-
pressing symmetry assumptions and conventions regard-
ing the zero of energy and the choice of units. We have
derived an amplitude equation governing localized buck-
ling patterns in a potential U(h, h′), and pointed out
an analogy with the standard case of an elastic (Win-
kler) foundation. The anharmonicity parameter νw of
the equivalent elastic foundation Uw(h) matches the pa-
rameter ν(U) of the original potential, which is νf = −2
in the floating case. We have shown that the wrinkle-
to-fold transition observed by Pocivavsek is a particu-
lar instance of the more general phenomenon of localized
buckling, and that the envelope postulated by Diamant
and Witten is optimal. This explains the excellent agree-
ment found between the theory based on the Ansatz of
Diamant and Witten, with the numerics and experiments
of Pocivavsek.
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Appendix: Expansion of energy to fourth order

With the aim to justify equation (12b), we carry out
the detailed expansion of energy (1b) to order ε4, using
the two-scale expansion (7a) and the critical values (11)
of the wavenumber kc and the load Pc.

Let us first define the energy functional Fε as a function
of the envelope H(S). For any function H(S), we con-
sider the associated buckling profile h(s) = H(s ε) cos s
as in equation (7a), insert this expression into the den-
sity of energy e in equation (1b), average with respect
to the fast variable s and finally carry out integration
with respect to slow variable S = ε s. The result is de-
noted Fε(H) symbolically, Fε being a functional of the
trial form H(S) of the envelope:

Fε(H) =

∫
〈e〉dS.

The explicit dependence of Fε on ε comes from the in-
tegration with respect to fast variable, and from the pa-
rameter P = Pc − ε2 in the potential energy term.

Let us expand the operator Fε order by order near
H ≡ 0:

Fε(H) = F [0] + F [1](H) +
1

2
F [2](H,H)

+
1

6
F [3](H,H,H) + · · · (A.1)

where F [i](G1, G2, · · · , Gi) denote a multilinear, sym-
metric operator acting on Gi(S) and its derivatives.

Since h(s) depends on the slow variable through a co-
sine function, any average with respect to the fast vari-
able of the form

〈hi(s)h′j(s)h′′k(s)〉

is zero when the sum of the integers i + j + k is odd.
Since the terms F [1](H) and F [3](H,H,H) contain only
such averages, those operators vanish:

F [1](H) = 0, F [3](H,H,H) = 0.

Some even terms in the expansion cancel as well. First,
the energy e is zero when h is identically 0, by equa-
tions (1b) and (4a). As a result, F [0] = 0. Second, we
note that the operator F [2] yields the energy at order
ε2 when the actual envelope H(S) = εH1(S) is used.
This calculation has already been done in Section IV. By
identifying with equation (10), we have

F [2](H,H) =
(1 + k4c − Pc k

2
c )

4

∫
H2(S) dS.
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The critical values (11) of the load Pc and wavenumber kc
imply that the numerical prefactor cancels. As a result,
this operator is zero too:

F [2](H,H) = 0.

We have just shown that the expansion (A.1) starts at
order 4 and contains only even powers:

Fε(H) =
1

24
F [4](H,H,H,H) +O(|H|6). (A.2)

We are interested in calculating the energy based on
the two-scale two-scale expansion (7a). Then, H is itself
given as an expansion, H(S) = εH1(S) + ε2H2(S) +
· · · . Inserting this into equation above, we find that the
expansion of the energy starts with

Fε(εH1+ε2H2+ · · · ) =
ε4

24
F [4](H1, H1, H1, H1)+O(ε5).

(A.3)
This equation shows that one can neglect all subdomi-
nant contributionsH2, H3 in the calculation of the energy
at order ε4. There is no need to keep track of cross-terms
like (H1

2H2) or (H1H
′′
3 ). Even though these terms are

formally of order ε4, they cancel out in the end.

We take advantage of this important simplification,
and insert

h(s) = εH1(s ε) cos s

into the energy, instead of the full expansion (7a). Using
the notation f[i] for the term of order εi in the expansion
of a quantity f , we have

h[1] = H1(S) cos s (A.4a)

h′[1] = −H1(S) sin s (A.4b)

h′[2] = H ′1(S) cos s (A.4c)

h′′[1] = −H1(S) cos s (A.4d)

h′′[2] = −2H ′1(S) sin s (A.4e)

h′′[3] = H ′′1 (S) cos s, (A.4f)

all other contributions, like h[2](s) or h′[3](s), being iden-

tically zero.

We are now ready to proceed to the explicit calcula-
tion of the energy density e at fourth order in ε. Let us
expand the first (bending) term in equation (1b), which
we denote eb:

eb =
h′′

2

2(1− h′2)
=
h′′

2

2
+
h′′

2
h′

2

2
+O(h6).

We average over the fast variable, and extract contribu-

tion proportional to ε4:

〈eb〉[4] =
2 〈h′′[1] h

′′
[3]〉+ 〈h′′[2]

2〉
2

+
〈h′′[1]

2
h′[1]

2〉
2

=
−2H1H

′′
1 〈cos2 s〉+ 4H ′1

2 〈sin2 s〉
2

+
H4

1 〈cos2 s sin2 s〉
2

= −1

2
H1H

′′
1 +H ′1

2
+

1

16
H4

1 . (A.5)

A similar calculation yields the potential energy asso-
ciated with the external compressive force P :

ep = −P (1−
√

1− h′2) ≈ −(2− ε2)

(
1

2
h′

2
+

1

8
h′

4
)

.

The corresponding contribution to order ε4 reads, after
averaging with respect to the fast variable,

〈ep〉[4] = −〈h′2〉[4] −
1

4
〈h′4〉[4] +

1

2
〈h′2〉[2]

= −〈h′[2]
2〉 − 1

4
〈h′[1]

4〉+
1

2
〈h′[1]

2〉

= −1

2
H ′1

2 − 3

32
H1

4 +
1

4
H1

2. (A.6)

Finally, we write a Taylor expansion of the foundation
energy U(h, h′) to fourth order. We make use of the
values of derivatives given in equations (4), and discard
all terms that cancel upon averaging with respect to the
fast variable — namely all the linear terms, all terms
of order 3, and the quartic terms U,h3h′(0, 0)h3 h′ and

U,hh′3(0, 0)hh′
3
:

〈U(h, h′)〉 =
1

2
〈h2〉+

1

24

(
Uh4(0, 0) 〈h4〉 · · ·

+ 6U,h2h′2(0, 0) 〈h2 h′2〉+ Uh′4(0, 0) 〈h′4〉
)

.

Extracting the contribution proportional to ε4, we find,
by a calculation similar to that done earlier:

〈U(h, h′)〉[4] =
ν(U)

64
H1

4, (A.7)

where ν(U) is the anharmonicity of the foundation, de-
fined by anticipation in equation (5).

Summing the three contributions to the energy given
in equations (A.5), (A.6) and (A.7), we find

〈e〉[4] =
1

4
H1

2 − 2− ν
64

H1
4 +

1

2
H ′1

2 − 1

2
H1H

′′
1 . (A.8)

To prepare for an integration by parts, this is rewritten
as

〈e〉[4] = 2

(
− 1

8

(
−H1

2 +
2− ν

16
H1

4

)
· · ·

+
1

2
H ′1

2 − 1

4

d(H1H
′
1)

dS

)
, (A.9)

as stated in equations (12a) and (12b).
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